

Foundations of Probabilistic Proofs

A course by Alessandro Chiesa

Lecture 22

Public vs Private Coins & Perfect Completeness

Public Coins vs Private Coins

Randomness in interactive proofs comes in different forms.

Ex 1: in 2-message IP for GNI, the verifier's random bit b must be secret

Ex 2: in poly(n)-message IP for TQBF, all verifier randomness is sent to the prover

TODAY: How do these settings compare?

def: A verifier V is **public-coin** if its every message is a freshly sampled uniform random string of a prescribed length. Otherwise, V is **private-coin**.

def: $AM[K]/MA[K]$ are languages decidable via K -round public-coin IPs where the verifier/prover moves first. ("A" stands for Arthur=verifier & "M" stands for Merlin=prover)

Trivial: $\forall K, AM[K], MA[K] \subseteq IP[K]$

Surprising: theorem: $\forall K, IP[K] \subseteq AM[K+1]$

We study a special case of the theorem today.

Revisiting Graph Non-Isomorphism

theorem: $\text{GNI} \in \text{AM}[\kappa=1]$ (Previously we proved that $\text{GNI} \in \text{IP}[\kappa=1]$.)

Idea: look at graph isomorphism in a quantitative way

def: The automorphism group of a graph $G = (V, E)$ is

$$\text{aut}(G) = \{ \pi: V \rightarrow V \mid \pi \text{ is a permutation and } \pi(G) = G \}$$

claim: G has $\frac{n!}{|\text{aut}(G)|}$ isomorphic graphs.

In particular, $|\{(H, \pi) \mid H \equiv G \wedge \pi \in \text{aut}(H)\}| = n!$

Given (G_0, G_1) , define $S := \{(H, \pi) \mid (H \equiv G_0 \vee H \equiv G_1) \wedge \pi \in \text{aut}(H)\}$.

Observe that: $\begin{cases} G_0 \equiv G_1 \rightarrow |S| = n! \\ G_0 \not\equiv G_1 \rightarrow |S| = 2 \cdot n! \end{cases}$

Moreover, can prove that $(H, \pi) \in S$ by providing isomorphism to G_0 or G_1 .

→ it suffices for the prover to convince the verifier that $|S| = 2 \cdot n!$

Tool: Pairwise Independent Hashing

A function family $H_{m,l} = \{ h : \{0,1\}^m \rightarrow \{0,1\}^l \}$ is **pairwise independent** if

$$\forall x, x' \in \{0,1\}^m \text{ with } x \neq x', \forall y, y' \in \{0,1\}^l \quad \Pr_{h \in H_{m,l}} \left[\begin{array}{l} h(x) = y \\ h(x') = y' \end{array} \right] = \frac{1}{2^{2l}}.$$

EXAMPLE: $H_{m,m} = \{ h_{a,b} (x) = ax + b \}_{a,b \in \mathbb{F}_{2^m}}$ (a random affine function over \mathbb{F}_{2^m})

$$\text{Indeed: } \Pr_{a,b} \left[\begin{array}{l} h_{a,b}(x) = y \\ h_{a,b}(x') = y' \end{array} \right] = \Pr_{a,b} \left[\begin{array}{l} ax + b = y \\ ax' + b = y' \end{array} \right] = \Pr_{a,b} \left[\begin{array}{l} a = \frac{y-y'}{x-x'} \\ b = y - ax \end{array} \right] = \frac{1}{2^{2m}}.$$

Actually we are interested in a family $H_{m,l}$ with $l < m$.

So consider: $H_{m,l} = \{ h_{a,b} (x) = ax + b \bmod 2^l \}_{a,b \in \mathbb{F}_{2^m}}$.

The truncation to l bits does NOT affect pairwise independence:

there are 2^{m-l} choices of $a \in \mathbb{F}_{2^m}$ s.t. $a \cdot (x-x') \bmod 2^l = y-y'$,

and for each such a there are 2^{m-l} choices of b s.t. $ax+b \bmod 2^l = y$.

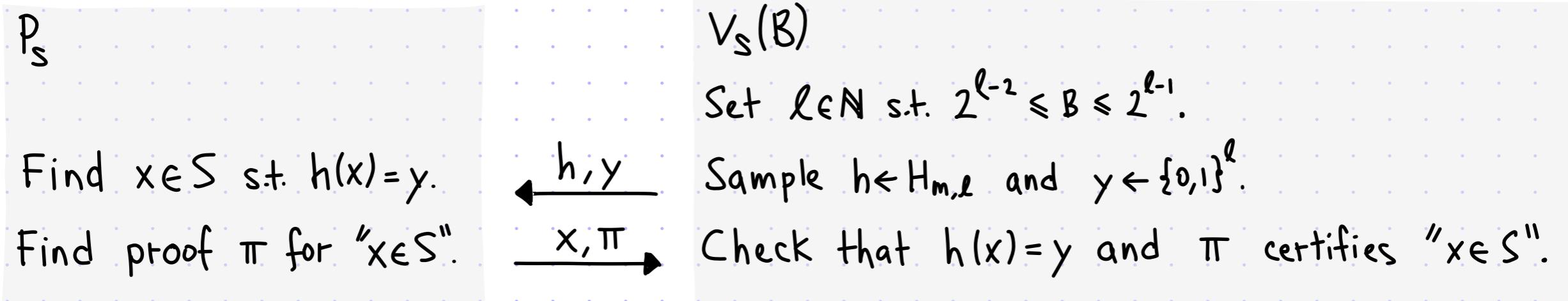
We have an efficient pairwise-independent function family $H_{m,l}$ for every m, l with $l \leq m$.

Set Lower Bound Protocol

[1/2]

Let $S \subseteq \{0,1\}^m$ be such that $S \in \text{NP}$ (can check that $x \in S$ with the help of a proof).

GOAL: an IP for the promise problem $\begin{cases} \text{YES if } |S| \geq B \\ \text{NO if } |S| \leq B/2 \end{cases}$.



lemma: if $|S| \geq B$ then $\Pr_{\substack{\text{honest prover} \\ \text{convinces verifier}}} \geq \frac{3}{4}B \cdot \frac{1}{2^\ell}$

if $|S| \leq \frac{B}{2}$ then $\Pr_{\substack{\text{malicious prover} \\ \text{convinces verifier}}} \leq \frac{1}{2}B \cdot \frac{1}{2^\ell}$

} gap is $\geq \frac{1}{4}B \cdot \frac{1}{2^\ell} \geq \frac{1}{16}$

Soundness: if $|S| \leq \frac{B}{2}$ then \nexists malicious prover

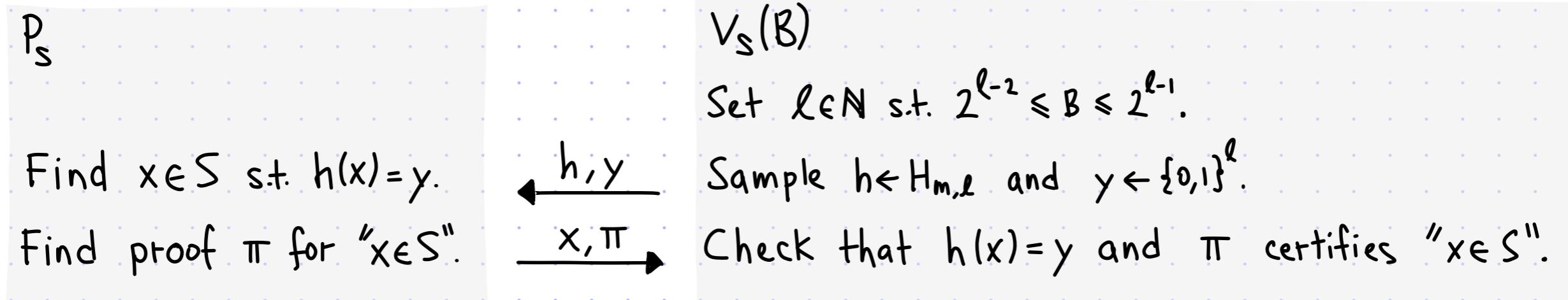
$$\Pr_{\substack{\text{malicious prover} \\ \text{convinces verifier}}} = \Pr_{h,y} [\exists x \in S : h(x) = y] \leq \sum_{x \in S} \Pr_{h,y} [h(x) = y] \leq |S| \cdot \frac{1}{2^\ell} \leq \frac{1}{2}B \cdot \frac{1}{2^\ell}.$$

Set Lower Bound Protocol

[2/2]

Let $S \subseteq \{0,1\}^m$ be such that $S \in \text{NP}$ (can check that $x \in S$ with the help of a proof).

GOAL: an IP for the promise problem $\begin{cases} \text{YES if } |S| \geq B \\ \text{NO if } |S| \leq B/2 \end{cases}$.



lemma: if $|S| \geq B$ then $\Pr[\text{honest prover convinces verifier}] \geq \frac{3}{4}B \cdot \frac{1}{2^\ell}$
 if $|S| \leq \frac{B}{2}$ then $\Pr[\text{malicious prover convinces verifier}] \leq \frac{1}{2}B \cdot \frac{1}{2^\ell}$

$$\left. \right\} \text{gap is } \geq \frac{1}{4}B \cdot \frac{1}{2^\ell} \geq \frac{1}{16}$$

randomness of y
is not used for
completeness

Completeness: wlog $|S| = B$ (larger $|S|$ increases acceptance probability). For every $y \in \{0,1\}^\ell$,

$$\begin{aligned} \Pr[\text{honest prover convinces verifier}] &= \Pr_h [\exists x \in S : h(x) = y] \geq \sum_{x \in S} \Pr[h(x) = y] - \sum_{\substack{x, x' \in S \\ x \neq x'}} \Pr[h(x) = y \text{ and } h(x') = y] \\ &= B \cdot \frac{1}{2^\ell} - \binom{B}{2} \cdot \frac{1}{2^{2\ell}} \geq \frac{B}{2^\ell} - \frac{B^2}{2^{2\ell+1}} = \frac{B}{2^\ell} \cdot \left(1 - \frac{B}{2^{\ell+1}}\right) \geq \frac{B}{2^\ell} \cdot \left(1 - \frac{1}{4}\right) = \frac{3}{4}B \cdot \frac{1}{2^\ell}. \end{aligned}$$

Inclusion-Exclusion Bound
 $\Pr[V_i E_i] \geq \sum_i \Pr[E_i] - \sum_{i \neq j} \Pr[E_i \cap E_j]$

Public Coin Interactive Proof for GNI

theorem: $GNI \in AM [K=1]$

Apply the set lower bound protocol on $S := \left\{ (H, \pi) \in \{0,1\}^{n^2+n \log n} \mid \begin{array}{l} (H \equiv G_0 \vee H \equiv G_1) \\ \wedge \pi \in \text{aut}(H) \end{array} \right\}$.

$P(G_0, G_1)$

Find $(H, \pi) \in S$ s.t. $h(H, \pi) = y$.

Find isomorphism ϕ from H to G_b .

$\xleftarrow{h, y}$
 $\xrightarrow{(H, \pi), \phi}$

$V(G_0, G_1)$

$B := 2 \cdot n!$, $m := n^2 + n \cdot \log n$

Set l s.t. $2^{l-2} \leq B \leq 2^{l-1}$ [and so $l = O(n \cdot \log n)$]

Sample $h \leftarrow H_{m, l}$ and $y \leftarrow \{0,1\}^l$.

Check that $h(H, \pi) = y$ and $(H, \pi) \in S$.

$\left[(\phi(H) = G_0 \vee \phi(H) = G_1) \wedge \pi \in \text{aut}(H) \right] \uparrow$

Completeness: if $(G_0, G_1) \in GNI$ then $|S| = 2 \cdot n!$ so

$$\Pr_{\substack{\text{honest prover} \\ \text{convinces verifier}}} = \Pr_{h,y} \left[\exists (H, \pi) \in S : h(H, \pi) = y \right] \geq \frac{3}{4} \cdot \frac{B}{2^l}.$$

Soundness: if $(G_0, G_1) \notin GNI$ then $|S| = n!$ so \nexists malicious prover

$$\Pr_{\substack{\text{malicious prover} \\ \text{convinces verifier}}} = \Pr_{h,y} \left[\exists (H, \pi) \in S : h(H, \pi) = y \right] \leq \frac{1}{2} \cdot \frac{B}{2^l}.$$

Perfect Completeness for Public Coins

The set lower bound protocol introduces a completeness error.

This is NOT essential:

theorem: If L has a k -round public-coin IP
then L has a $(k+1)$ -round public-coin IP with perfect completeness.

Example: We showed that $GANI \in AM[k=1]$, so we deduce that $GANI \in AM[\epsilon_c=0, k=2]$.
($GANI$ has a 2-round public-coin IP with perfect completeness.)

We proceed in several steps.

- Warmup: simple protocol to reduce (but not eliminate) completeness error.
- Review: Lautemann's proof that $BPP \subseteq \Sigma_2^P$.
- Proof: we build on warmup and review.

Warmup: Reduce Completeness Error

Repeat the protocol multiple times and accept if AT LEAST one execution accepts.

$P_*(x)$:

$$\forall i \in [t], a_j^{(i)} := P(x, s_1^{(i)}, \dots, s_{j-1}^{(i)})$$

For $j=1, \dots, k$:

$$\frac{a_j^{(1)}, \dots, a_j^{(t)}}{s_j^{(1)}, \dots, s_j^{(t)}}$$

$V_*(x)$:

$$\text{Sample } s_j^{(1)}, \dots, s_j^{(t)} \in \{0,1\}^{r_j}.$$

$$\exists i \in [t] \quad V(x, a_1^{(i)}, \dots, a_k^{(i)}; s_j) = 1$$

For every repetition parameter $t \in \mathbb{N}$:

- $\epsilon_c \mapsto \epsilon'_c = \epsilon_c^t \quad \Pr[\langle P_*(x), V_*(x) \rangle = 0] = (\Pr[\langle P(x), V(x) \rangle = 0])^t \leq \epsilon_c^t$
- $\epsilon_s \mapsto \epsilon'_s = t \cdot \epsilon_s \quad \Pr[\langle P_*(x), V_*(x) \rangle = 1] \leq t \cdot \Pr[\langle P(x), V(x) \rangle = 1] \leq t \cdot \epsilon_s$
- $k \mapsto k' = k \quad$ The t executions are in parallel.
- $c \mapsto c' = t \cdot c \quad$ Each execution contributes c bits of communication.

The completeness error can be made **arbitrarily small**, but **NOT zero**.

BUT: a clever twist on this protocol achieves perfect completeness.

Review: Lautemann Theorem

theorem: $BPP \subseteq \Sigma_2^P$

Recall that $L \in \Sigma_2^P \leftrightarrow \exists \text{ polynomial-time algorithm } D \text{ s.t. } \begin{cases} x \in L \rightarrow \exists y \forall z \ D(x, y, z) = 1 \\ x \notin L \rightarrow \forall y \exists z \ D(x, y, z) = 0 \end{cases}$

Let L be decidable by a polynomial-time probabilistic algorithm M with $\begin{cases} \text{YES-error } \alpha \\ \text{NO-error } \beta \end{cases}$.

We use the **probabilistic method** to show the two conditions:

- If $x \in L$ then (provided $t > -\frac{1}{\log \alpha}$) $\exists \sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r \ \forall g \in \{0,1\}^r \ (\exists i \in [t] \ M(x; \sigma^{(i)} \oplus g) = 1)$:

$$\Pr_{\sigma^{(1)}, \dots, \sigma^{(t)}} \left[\exists g \in \{0,1\}^r \ (\forall i \in [t] \ M(x; \sigma^{(i)} \oplus g) = 0) \right] \leq \sum_{g \in \{0,1\}^r} \Pr_{\sigma^{(1)}, \dots, \sigma^{(t)}} \left[\forall i \in [t] \ M(x; \sigma^{(i)} \oplus g) = 0 \right]$$

For t large enough
MOST $\sigma^{(1)}, \dots, \sigma^{(t)}$ are good.

$$= 2^r \cdot \Pr_{g^{(1)}, \dots, g^{(t)}} \left[\forall i \in [t] \ M(x; g^{(i)}) = 0 \right] \leq 2^r \cdot \alpha^t < 1.$$

- If $x \notin L$ then (provided $t < \frac{1}{\beta}$) $\forall \sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r \ \exists g \in \{0,1\}^r \ (\forall i \in [t] \ M(x; \sigma^{(i)} \oplus g) = 0)$:

Fix $\sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r$. For every $i \in [t]$, $\Pr_{g \in \{0,1\}^r} [M(x; \sigma^{(i)} \oplus g) = 1] = \Pr_{g \in \{0,1\}^r} [M(x; g) = 1] \leq \beta$.

Hence,

$$\Pr_{g \in \{0,1\}^r} [\exists i \in [t] \ M(x; \sigma^{(i)} \oplus g) = 1] \leq \sum_{i \in [t]} \Pr_{g \in \{0,1\}^r} [M(x; \sigma^{(i)} \oplus g) = 1] \leq t \cdot \beta < 1.$$

The condition $\exists t \in \mathbb{N} \ -\frac{1}{\log \alpha} < t < \frac{1}{\beta}$ can be achieved by repetition (and taking majority).

Eg, for $\alpha_0, \beta_0 = \frac{1}{3}$, l -wise error reduction gives $\alpha, \beta = \exp(-l)$, yielding $O(l \cdot r) < t < \exp(l)$.

Proof of Perfect Completeness for IPs

[1/3]

Let (P, V) be a k -round public-coin IP for L .

Let r be the randomness complexity of V , divided by rounds as r_1, \dots, r_k with $\sum_{j \in [k]} r_j = r$.

For every repetition parameter $t \in \mathbb{N}$ the new public-coin IP (P_*, V_*) is as follows:

$P_*(x)$:

Find $\sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r$ s.t.

$$\forall g \in \{0,1\}^r \exists i \in [t] \langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 1$$

$$\forall i \in [t], a_j^{(i)} := P(x, \sigma_1^{(i)} \oplus g_1, \dots, \sigma_{j-1}^{(i)} \oplus g_{j-1})$$

$V_*(x)$:

$$\overrightarrow{\sigma^{(1)}, \dots, \sigma^{(t)}}$$

For $j=1, \dots, k$:

$$\overrightarrow{a_j^{(1)}, \dots, a_j^{(t)}} \quad \xleftarrow{g_j}$$

Sample $g_j \in \{0,1\}^{r_j}$.

$$\exists i \in [t] V(x, a_1^{(i)}, \dots, a_k^{(i)}; \sigma^{(i)} \oplus g) = 1$$

- $\epsilon_c \mapsto \epsilon'_c = 0$ Provided that $t > -\frac{r}{\log \epsilon_c}$, as we prove soon.
- $\epsilon_s \mapsto \epsilon'_s = t \cdot \epsilon_s$ As we prove soon. It is < 1 provided that $t < \frac{1}{\epsilon_s}$.
- $k \mapsto k' = k+1$ There are t (correlated) executions in parallel, plus an extra message.
- $c \mapsto c' = t \cdot (c+r)$ Each execution contributes c bits, plus $t \cdot r$ bits in the extra message.

The condition $\exists t \in \mathbb{N} -\frac{r}{\log \epsilon_c} < t < \frac{1}{\epsilon_s}$ can be achieved by repetition (and taking majority).

Proof of Perfect Completeness for IPs

[2/3]

$P_*(x)$:

Find $\sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r$ s.t.

$$\forall g \in \{0,1\}^r \exists i \in [t] \langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 1$$

$$\forall i \in [t], a_j^{(i)} := P(x, \sigma_1^{(i)} \oplus g_1, \dots, \sigma_{j-1}^{(i)} \oplus g_{j-1})$$

$V_*(x)$:

$$\overrightarrow{\sigma^{(1)}, \dots, \sigma^{(t)}}$$

For $j=1, \dots, k$:

$$\overrightarrow{a_j^{(1)}, \dots, a_j^{(t)}} \\ \xleftarrow{g_j}$$

Sample $g_j \in \{0,1\}^{r_j}$.

$$\exists i \in [t] V(x, a_1^{(i)}, \dots, a_k^{(i)}; \sigma^{(i)} \oplus g) = 1$$

Completeness:

Suppose that $x \in L$.

If $P_*(x)$ finds "good" $\sigma^{(1)}, \dots, \sigma^{(t)}$ then $P_*(x)$ convinces $V_*(x)$ with probability 1.

They exist:

$$\Pr_{\sigma^{(1)}, \dots, \sigma^{(t)}} \left[\exists g \in \{0,1\}^r \forall i \in [t] \langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 0 \right] \leq \sum_{g \in \{0,1\}^r} \Pr_{\sigma^{(1)}, \dots, \sigma^{(t)}} \left[\forall i \in [t] \langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 0 \right]$$

$$= 2^r \cdot \Pr_{g^{(1)}, \dots, g^{(t)}} \left[\forall i \in [t] \langle P(x), V(x, g^{(i)}) \rangle = 0 \right] \leq 2^r \cdot \varepsilon_c^t < 1.$$

$$t > -\frac{r}{\log \varepsilon_c}$$

Proof of Perfect Completeness for IPs

[3/3]

Soundness: Suppose that $x \notin L$ and fix a malicious prover \tilde{P}_* .

For every $i \in [t]$, define \tilde{P}_i against V as follows:

- Run \tilde{P}_* to obtain $(\sigma^{(1)}, \dots, \sigma^{(t)})$.
- In round $j \in [k]$ (having received s_1, \dots, s_{j-1} from V):
 - compute the next message as $a_j := \tilde{P}_*(s_1 \oplus \sigma_1^{(j)}, \dots, s_{j-1} \oplus \sigma_{j-1}^{(j)})[i]$.

Define $(\sigma^{(1)}, \dots, \sigma^{(t)}) := \tilde{P}_*$ (the prover's first message).

For every $i \in [t]$,

$$\begin{aligned} & \Pr_{s \in \{0,1\}^r} [V(x, \tilde{P}_*(s_1)[i], \dots, \tilde{P}_*(s_1, \dots, s_k)[i]; \sigma^{(i)} \oplus s) = 1] \\ &= \Pr_{s \in \{0,1\}^r} [V(x, \tilde{P}_i(\sigma_1^{(i)} \oplus s_1), \dots, \tilde{P}_i(\sigma_1^{(i)} \oplus s_1, \dots, \sigma_k^{(i)} \oplus s_k); \sigma^{(i)} \oplus s) = 1] \\ &= \Pr_{s \in \{0,1\}^r} [V(x, \tilde{P}_i(s_1), \dots, \tilde{P}_i(s_1, \dots, s_k); s) = 1] \leq \varepsilon_s. \end{aligned}$$

We conclude that

$$\begin{aligned} \Pr_{s \in \{0,1\}^r} [\langle \tilde{P}_*, V(x; s) \rangle = 1] &= \Pr_{s \in \{0,1\}^r} [\exists i \in [t] \ V(x, \tilde{P}_*(s_1)[i], \dots, \tilde{P}_*(s_1, \dots, s_k)[i]; \sigma^{(i)} \oplus s) = 1] \\ &\leq \sum_{i \in [t]} \Pr_{s \in \{0,1\}^r} [V(x, \tilde{P}_*(s_1)[i], \dots, \tilde{P}_*(s_1, \dots, s_k)[i]; \sigma^{(i)} \oplus s) = 1] \leq t \cdot \varepsilon_s < 1. \end{aligned}$$

$t < \frac{1}{\varepsilon_s}$

The Case of IOPs: Private to Public Coins

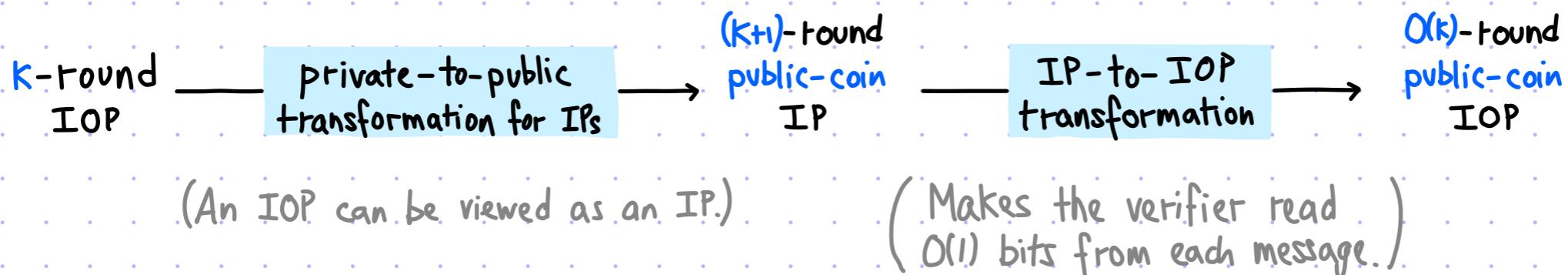
The IP transformation does not extend to IOPs:

the set lower bound protocol **does NOT** preserve query complexity.

Nevertheless a similar theorem holds:

theorem: If L has a k -round IOP with
then L has a $O(k)$ -round public-coin IOP

The proof approach is as follows:



A key ingredient of the IP-to-IOP transformation is **Index-Decodable PCPs**, a strengthening of the notion of **Holographic PCPs**.

The Case of IOPs: Perfect Completeness

The IP transformation extends to IOPs with a moderate increase in

query complexity: $q \mapsto q' = t \cdot q = O\left(-\frac{r}{\log \epsilon_c}\right) \cdot q$.

Since usually $r = \Omega(\log n)$, q' is super-constant even if $q = O(1)$.

We can **preserve query complexity** (up to a small additive constant) with a small tweak:

$P_*(x)$:

Find $\sigma^{(1)}, \dots, \sigma^{(t)} \in \{0,1\}^r$ s.t.

$\forall g \in \{0,1\}^r \exists i \in [t] \langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 1$

$\forall i \in [t], a_j^{(i)} := P(x, \sigma_i^{(i)} \oplus g_1, \dots, \sigma_{j-1}^{(i)} \oplus g_{j-1})$

Find $i \in [t]$ s.t. $\langle P(x), V(x, \sigma^{(i)} \oplus g) \rangle = 1$

$V_*(x)$:

$\sigma^{(1)}, \dots, \sigma^{(t)} \xrightarrow{\quad}$

For $j=1, \dots, K$:

$a_j^{(1)}, \dots, a_j^{(t)} \xrightarrow{\quad}$
 $\xleftarrow{\quad g_j \quad}$

Sample $g_j \in \{0,1\}^{r_j}$.

$i \xrightarrow{\quad}$

$V(x, a_1^{(i)}, \dots, a_K^{(i)}; \sigma^{(i)} \oplus g) = 1$

The IOP prover tells the IOP verifier which execution accepts.

→ The IOP verifier reads $i \in [t]$, then reads $\sigma^i \in \{0,1\}^r$,

and then checks the i -th execution with randomness $\sigma^{(i)} \oplus g$.

Note: the IOP verifier is adaptive.

New parameters:

- $\epsilon_c \mapsto \epsilon'_c = 0$
- $\epsilon_s \mapsto \epsilon'_s = t \cdot \epsilon_s$
- $K \mapsto K' = K+1$
- $|\Sigma| \mapsto |\Sigma'| = \max\{|\Sigma|, 2^r, t\}$
- $l \mapsto l' = t \cdot l + t + 1$
- $q \mapsto q' = q+2$
- $r \mapsto r' = r$